Laser Beam Welding VS Plasma Arc Welding
Welding laser trabem
Radius laser glutino summus efficacia est et methodus valde accurata glutino utens summus energiae densitatis trabes laseris tamquam fons caloris eius. Welding fieri potest a radiis laseris continui seu pulsu. Secundum principia laser welding, processus ulterius in duo dividi possunt: conductio caloris glutino et laser glutino profundo. Potentia densitatis infra 104 ~ 105 W/cm2 refertur ad calefactionem conductionis glutino. In illo tempore penetratio profunditatis est tenui cursu lento glutino; cum potentia densitatis major est quam 105~107W /cm2, sub actione caloris, superficies metallica recipit recessum in "foraminis" apparentiam ad formam penetrationis altae glutino.
Features
Features of Fast welding Speed and large aspect Ratio
Laser glutino plerumque utitur radiis laser continuis ad connexionem materiae perficiendam. Processus physicus metallurgicus simillimus est trabi glutino electronico, id est, vis conversionis mechanismi per structuram clavem "clavis" perficiendam.
Sub alta potentia densitatis laser irradiatio, materia evaporat et format parva foramina. Hoc foramen parvum vapore repletum est instar corporis nigri, omnem fere vim trabes incidentis absorbentis. Aequilibrium temperatura in cavitate circiter 2500C est. A calore parietis exterioris transfertur cavitas caliditatis, liquefaciens metallo cavum ambiente. Parva foramina repleta sunt vapore calidissimus generatus ex continua evapora- tione parietis materiae sub radio lucis.
The 4 walls of the small holes surround the mol10 metal and the liquid metal surrounds the solid material. (In most conventional welding processes and laser conduction welding, the energy is 1st (Deposited on the surface of the workpiece, then transported to the inside by transfer). The liquid flow outside the hole wall and the surface tension of the wall layer are consistent with the steam pressure continuously generated in the hole cavity and maintain a dynamic balance. The light beam continuously enters the small hole, and the material outside the small hole is continuously flowing. As the light beam moves, the small hole is always in a stable state of flow.
That is to say, the small hole and the mol10 metal surrounding the hole will move forward with the forward speed of the leading beam. The mol10 metal fills the gap left by the small hole and then condenses, and the weld is formed. All of the above process happens so fast that the welding speed can easily reach several meters per minute.
1. Laser tignum glutino est fusio weldiana, qua laser trabes utitur ut fons industriae, et iuncta iuncta impacta est.
2. Trabs laseris per plana elementum opticum (ut in speculo) dirigi potest, et deinde trabs in commissurae pugillo commissurae cum reflexione posito vel lens elemento projicitur.
3. Laser beam welding is non-contact welding. No pressure is required during the operation, but inert gas is needed to prevent oxidation of the mol10 pool. The filler metal is occasionally used.
4. Laser glutino coniungi potest cum MIG glutino ad formam laser MIG composito glutino ad magnam penetrationem glutino perficiendam, dum calor initus valde deminutus ad MIG glutino comparatus est.
Applications
Machina glutinatio laser late in tam alta praecisione agrorum fabricandorum ut autocineta, naves, aeroplana, et celeritate plenas blasphemiae adhibetur. Valde emendavit qualitatem vitae pro hominibus ac etiam industriae instrumentum ad praecisionem machinalis propulsavit.
Arcus Plasma Welding
Plasma arc welding refers to a fusion welding method that uses a plasma arc high-energy density beam as a welding heat source. During welding, the ion gas (forming an ion arc) and the shielding gas (to protect the mol10 pool and welding seam from the harmful effects of air) are pure argon. The electrodes used in plasma arc welding are generally tungs10 electrodes and sometimes need to be filled with metal (welding wire). Generally, the DC positive connection method is adopted (the tungs10 rod is connected to the negative electrode). Therefore, plasma arc welding is essentially a tungs10 gas-shielded welding with a compression effect.
Plasma arcus glutino proprietates energiae energiae, productivitatis altae, celeritas glutino celeritas, parva vis deformatio, et solitudo electrica stabilis habet, et ad tenuissimas laminas et cistae materias glutino apta est. Praecipue apta est variis refractoribus, facile oxidizatis, materiae metallica-sensitivae (ut tungsten, molybdenum, cuprum, nickel, titanium, etc.).
Gas calefactio arcus dissociatur et comprimitur, cum per alvum aquarum refrigeratum in celeritate alta transiens, vim densitatis et gradum dissociationis augens, arcum plasma formans. Eius stabilitas, calorificus valor et temperatus sunt altiores arcu generali, unde maiorem vim habet et celeritas glutino. Gas arcum plasma formans et gasum circumfusum scutulatum vulgo argon puro utuntur. Prout materiae proprietates variarum officinarum, utuntur nonnulli helium, nitrogenium, argonis, vel mixturam utriusque.
Features
1. Micro-trabs plasma arcus glutino rudiculas et laminas tenues conglutinare potest.
2. Cum parvo foramine effectus, melius percipere potest conglutinationem simplicem et duplex postesque formationem liberam.
3. Plasma arc has high energy density, high arc column temperature, and strong penetration ability. It can achieve 10-12mm thick steel without bevel welding. It can be welded through double-sided forming at one time. The welding speed is fast, the productivity is high, and the stress deformation is small.
4. Apparatus relative complicatus est, consumptio gasorum magna est, coetus stricte requisita in alvi et munditia fabricae habet, et solum ad glutino umbraticis idoneus est.
Applications
Plasma welding is a of the important means in industrial production, especially for welding copper and copper alloy, titanium and titanium alloy, alloy steel, stainless steel, molybdenum, and other aerospace metals, which are used in military and other cutting-edge industries, such as the manufacture of a certain type of missile shell made by titanium alloy and partial thin-walled containers on aircraft.
Sumptus, sustentationem et efficientiam operational
Aliquot factores comparando electiones technologiarum inter trabem laseris glutino et plasma arcui glutino ad applicationes industriales includunt sumptus, sustentationem et efficientiam operationalem.
Pretium Analysis
Laser beam welding requires a high initial investment since the equipment is complicated compared to plasma arc welding. The worth of general industrial laser welding systems usually ranges upwards of USD 200,000, whereas plasma arc welding systems have costs somewhere in the range of USD 10,000 to USD 50,000. However, LBW has the potential for significant long-term cost savings thanks to increased processing rates as well as minimal post-weld finishes required. Plasma welding could have higher consumable costs for continued operation.
victum Requirements
Quia partes consumabiles, ut electrodes et nozzales gasi, crebrius fatigant, plasma arcus systematis glutino frequentiorem sustentationem requirere solet. Contra, systemata laser glutino consumables pauciores requirunt, sed earum perspectiva et laser fontes interdum purgatione et recalibratione indigent. Cum recte servetur, fontes laser perdurare potest plusquam 20,000 horarum minore tempore. Systemata plasma, quamvis simpliciora, frequentiores interpellationes cum consumables gerunt possunt experiri.
operational efficientia
The welding techniques of laser are much faster and more accurate, reaching speeds of as high as 10 meters per minute on thin materials, hence very ideal for mass production. It also produces very minute heat-affected zones, hence giving minimal material distortion, thus improving the quality of the product. Plasma welding is effective in thicker materials, though at a slower speed, of10 needing additional finishing touches to clean up welds, such as grinding.
While laser beam welding requires higher investment costs upfront, its efficiency and less frequent need for maintenance of10 provide cost benefits in the long run, especially for applications requiring high precision. Plasma arc welding is still good for less complex work and smaller operations.